What Engineers Mean by Agentic AI (and Why Leaders Hear Something
Else)

Introduction

The term agentic Al is now used routinely in technical briefings, product descriptions, and
executive conversations. Engineers speak of agents, multi-agent systems, and agentic workflows
as if the meaning were self-evident. Leadership hears the same term and often infers systems
capable of insight, discovery, and autonomous reasoning about complex problems. Both groups
are using the same language. They are rarely describing the same thing.

This divergence reflects multiple conceptions of intelligence operating under a single
vocabulary. In technical practice, agentic Al is grounded in rational agents that optimize action
under uncertainty. In executive contexts, agentic Al is often implicitly associated with epistemic
capability, the capacity to surface unknowns, challenge assumptions, and rethink the problem.
This ambiguity is not theoretical. It appears repeatedly in technical briefings, acquisition
discussions, and strategic planning sessions where all parties believe they are aligned.

The consequence is structural. Systems designed for action optimization are evaluated as if they
were discovery engines. Outputs produced through optimization or pattern synthesis are
interpreted as theory formation or understanding. When systems fail to meet those expectations,
the failure is attributed to immaturity, scale, or insufficient autonomy, rather than to a difference
in rationality class. This affects how systems are specified, how risk is assessed, how success is
measured, and how governance is applied.

This article introduces a taxonomy of agentic systems based on rationality and objective rather
than implementation detail. By distinguishing between action-centric agentic Al, hybrid agentic
environments, and epistemic agentic Al, it clarifies what current systems do, why expectations
diverge, and what changes as hybrid architectures increasingly appear in real deployments. The
goal is classification and alignment: precise language that lets engineers and leaders
communicate clearly about capability, limitation, evaluation, and authority without collapsing
fundamentally different objectives into a single term.

Terminology Mapping for the Remainder of This Paper
To reduce ambiguity, I will use the following terms definitions to provide consistency.

Action centric agentic Al: Rational action selection that maximizes expected performance
within a fixed performance measure and assumed environment ontology.

Hybrid agentic environment: Action centric agents for execution combined with external
epistemic functions, such as anomaly preservation, bias analysis, alternative representation
construction, or hypothesis surfacing.

Epistemic agentic AI: A distinct rationality class in which the primary objective is explanatory
model generation, evaluation, and revision, and progress is measured by epistemic utility rather
than task performance.



This mapping establishes the vocabulary used in the sections that follow and prevents a single
overloaded term from being interpreted as multiple architectures. This taxonomy does not
propose a new definition of agentic Al, but makes explicit the definitions already in use and the
rationality assumptions they carry.

What Engineers Mean by Agentic Al Today

When engineers describe agents, multi-agent systems, or agentic workflows, they are usually
operating within the rational agent framework formalized by Stuart Russell and Peter Norvig in
Artificial Intelligence: A Modern Approach. This framework remains the dominant theoretical
reference point for how agents are defined and reasoned about in contemporary artificial
intelligence systems, even when it is not explicitly cited.

Under this formulation, an agent is rational if, for every possible percept sequence, it selects an
action that maximizes the expected value of a predefined performance measure, given its prior
knowledge and computational constraints. Intelligence is defined behaviorally, in terms of action
selection under uncertainty, rather than epistemically, in terms of explanation or understanding.
That is, intelligence is evaluated by whether the agent chooses actions that optimize a predefined
performance measure given its information and constraints, not by whether the agent can assess
the adequacy of its own models, justify its abstractions, or reason about why a particular
representation of the problem is correct. Internal representations, beliefs, memory, and learned
abstractions are instrumental. They exist to improve action selection relative to the performance
measure, not to evaluate whether the underlying model of the world is conceptually adequate.

Modern implementations extend this framework without changing its foundational commitments.
Reinforcement learning agents approximate optimal policies relative to reward functions.
Planning agents simulate action sequences within a fixed state space. Large language models,
when used as agents, add tool invocation, memory, and longer-horizon control. These additions
expand operational reach, but rationality remains tied to a fixed objective and an assumed
environment ontology.

Understanding how uncertainty is treated within this framework is essential, because it defines
both the power of action-centric agents and the boundary beyond which uncertainty no longer
signals insufficient data or optimization, but instead indicates a limitation of the assumed model,
an area where epistemic reasoning would be required but is not available within this framework.

Stochastic Environments and the Treatment of Uncertainty

A defining feature of the Russell and Norvig framework is its explicit treatment of uncertainty.
Agents are assumed to operate in environments that may be partially observable,
nondeterministic, or stochastic. A stochastic environment is one in which the outcome of an
action is governed by a probability distribution rather than deterministic transition rules.
Identical actions taken in apparently identical states may yield different outcomes due to
randomness, hidden variables, or incomplete information. This formulation captures real-world
variability while preserving the assumption that the space of possible states and outcomes is
known in advance.



Within this framework, rationality is defined not by guaranteeing outcomes, but by maximizing
expected utility across possible outcomes weighted by their probabilities. Learning improves the
agent’s estimates of state, transition dynamics, or reward distributions, allowing it to act more
effectively under uncertainty. Importantly, uncertainty is defined relative to incomplete
information within the assumed environment model. It does not extend to uncertainty about the
adequacy of the model itself. The ontology of states, actions, and outcomes is taken as given, and
rational behavior consists of acting optimally within that fixed conceptual frame.

This distinction becomes decisive when systems are expected not only to act under uncertainty,
but to recognize when the uncertainty reflects a limitation of the model itself rather than of the
data.

Action Centric Rationality and Its Implications

Within the rational agent framework, intelligence is inseparable from action optimization.
Internal models, simulations, causal structures, and learned representations exist to support
decision making under uncertainty. Even when agents perform internal planning, counterfactual
reasoning, or causal inference, these processes remain subordinate to the objective of
maximizing expected performance within a predefined abstraction.

This action-centric rationality defines the current technical vernacular of agentic AI. When Al
specialists describe building agents, orchestrating agent workflows, or composing subject matter
expert agents, they are almost always referring to systems that instantiate this rationality model.
The incorporation of contemporary components such as large language models, memory, tool
invocation, or long-horizon planning does not alter this underlying commitment. These
mechanisms extend the expressiveness and temporal scope of policy execution, but they do not
change the definition of rational behavior.

Under prevailing technical usage, agentic Al encompasses a wide range of established
techniques. Classical planning algorithms compute action sequences that satisfy goal constraints.
Reinforcement learning agents approximate optimal policies relative to reward functions. Model-
based agents maintain explicit transition dynamics to support policy evaluation. Multi-agent
systems extend rational action to strategic and cooperative settings, but preserve the same
performance-based rationality criterion. In all cases, success is defined relative to a task-specific
objective function.

Multi-agent architectures do not constitute a different rationality class. Each agent remains
rational with respect to its assigned objective, and coordination mechanisms are designed to
improve joint performance or stability. Disagreement among agents is treated as a coordination
problem to be resolved. Convergence toward coherent action is assumed to be desirable and is
often explicitly enforced.

What this vernacular excludes by definition is epistemic rationality as a primary objective. The
agent does not evaluate whether its abstraction of the environment is correct. Persistent
anomalies are treated as noise, estimation error, or stochastic variance unless explicitly modeled



otherwise. There is no formal mechanism for revising representational assumptions, introducing
new explanatory variables, or managing competing theories.

These exclusions are not omissions or implementation gaps. They are direct consequences of a
framework designed to solve decision and control problems rather than discovery or model
construction problems. The agent may be uncertain about the state of the world, but not about the
structure of the world it reasons over.

This definition persists because it is precise, mathematically grounded, and operationally
tractable. Systems can be formally specified, evaluated, and governed. Performance metrics are
well defined. Failure modes can be analyzed. Safety mechanisms can be applied. For execution-
oriented domains, this rationality model is not only sufficient, but often optimal.

As a result, when engineers use the term agentic Al, they are almost always referring to action-
centric systems grounded in this framework, even when the language used is informal or
compressed. The ambiguity addressed in this paper does not arise from disagreement within the
technical community, but from how this shared vernacular is interpreted outside it.

Why Expectations Diverge and How Agentic Al Is Evolving in Practice

The divergence between what engineers mean by agentic Al and what leaders often hear is not
accidental. It arises from a mismatch between the rationality model that governs current agentic
systems and the epistemic demands of the domains in which those systems are increasingly
deployed.

As agentic Al systems are applied to environments characterized by uncertainty, incomplete
theory, and evolving problem definitions, expectations shift accordingly. In such contexts,
stakeholders frequently expect systems not only to execute decisions, but to surface unknowns,
challenge assumptions, and support strategic understanding. These expectations arise naturally
from the nature of the problems being addressed, rather than from misunderstanding or
overconfidence.

As aresult, when the term agentic Al is used in these settings, it is often interpreted as referring
to systems capable of reasoning about the adequacy of the problem formulation itself. This
includes expectations that systems can identify gaps in current understanding, preserve
unresolved anomalies, and propose new explanatory structures. These expectations align with
epistemic objectives, even when they are not explicitly articulated in technical terms.

By contrast, the prevailing technical definition of agentic Al remains grounded in action-centric
rationality. Under this definition, intelligence consists of selecting actions that maximize
expected performance within a fixed environment model. The agent is not tasked with evaluating
whether that model is sufficient or conceptually appropriate. Knowledge remains instrumental.
Action remains primary. This difference in assumed objectives, rather than any disagreement
about implementation quality, is the source of the expectation gap.

Epistemic Agentic Al as the Implicit Ideal



What leaders often implicitly expect from agentic Al aligns with what can be described as
epistemic agentic Al In this framing, the primary objective of the system is not the execution of
actions, but the generation, evaluation, and revision of explanatory models.

In an epistemic rationality model, an action, computation, or representational change is rational if
it increases the system’s capacity to explain observed phenomena, unify disparate evidence, or
surface previously unrecognized structure, even when doing so temporarily degrades predictive
accuracy or operational performance. Progress is evaluated in terms of epistemic utility rather
than task-level outcomes.

This definition stands in direct contrast to action centric rationality. Where classical agents are
evaluated by environmental outcomes, epistemic agents would be evaluated by explanatory
adequacy, internal coherence, cross-domain consistency, falsifiability, and the ability to generate
new testable hypotheses. Importantly, epistemic utility is not monotonic: Action-centric
performance is often expected to be monotonic: more data, better models, higher accuracy.
Epistemic progress is often non-monotonic: confusion, contradiction, and instability can precede
insight. Progress in explanation often requires abandoning or destabilizing existing models,
which can temporarily reduce predictive accuracy, increase uncertainty, or invalidate previously
effective representations before more adequate abstractions emerge. Introducing new
abstractions often increases uncertainty before it reduces it.

A defining feature of epistemic agentic Al is its treatment of anomalies. Persistent deviations that
cannot be resolved through optimization are interpreted as evidence of model inadequacy rather
than as noise. Under epistemic rationality, the appropriate response is not correction, but
representational revision. This behavior is explicitly irrational under action centric criteria but
rational under epistemic criteria.

Hybrid Agentic Environments as a Transitional Response

While epistemic agentic Al remains largely aspirational, agentic systems in practice are already
evolving in response to epistemic pressure. The dominant response has not been to redefine
agent rationality, but to extend system architecture. This has given rise to hybrid agentic
environments.

A hybrid agentic environment consists of action centric agents operating under classical
rationality, augmented by auxiliary components that perform epistemically relevant functions
such as anomaly preservation, bias detection, alternative representation construction, or
hypothesis surfacing. In these environments, epistemic behavior is not intrinsic to the agents
themselves. The core agents continue to optimize behavior relative to fixed objectives and
assumed models.

Epistemic functions are introduced architecturally rather than rationally. They exist alongside
action centric agents rather than within them, meaning they operate as parallel analytic services
that consume the agent’s observable artifacts, such as inputs, intermediate state, decisions, and
outcomes, and then produce epistemic outputs without influencing policy selection or reward



optimization. Humans frequently remain responsible for interpreting these epistemic signals and
deciding when representational revision is warranted.

Graph-based overlays are particularly effective in hybrid environments because they allow
multiple, potentially incompatible relational interpretations to coexist without forcing resolution,
for example by encoding statistical associations, causal hypotheses, and institutional or policy
relationships as parallel node-and-edge structures derived from the same execution trace. For
example, an execution agent may continue to generate recommendations, while an auxiliary
analytic agent writes each decision and outcome to an event log that feeds a graph-based overlay,
where entities, actions, assumptions, and impacts are encoded explicitly as nodes and edges, and
where consistency checks and bias diagnostics are computed over the resulting structure.
Humans frequently remain responsible for interpreting these epistemic signals and deciding
when representational revision is warranted.

Hybrid environments therefore redistribute cognitive labor without redefining rationality,
preserving execution stability while making epistemic limits visible. Action centric agents
execute. Analytic components interrogate. The system as a whole may support discovery-
oriented workflows, but no individual agent is rationally committed to theory evaluation or
revision as a first-class objective. In hybrid environments, these graph representations remain
epistemically inert substrates for human interpretation; in epistemic agentic systems, similar
structures would instead be objects of active contestation, revision, and synthesis by the agents
themselves.

Reinterpreting Progress and Stability

As hybrid agentic environments become more common, traditional notions of progress must be
reconsidered. In action-centric systems, progress is measured by improved performance, reduced
error, and convergence toward stable policies. In epistemic contexts, these same signals may
indicate stagnation rather than advancement.

Hybrid systems often surface increased uncertainty, persistent anomalies, or competing
interpretations. When evaluated under action-centric criteria alone, such behavior appears
unstable or insufficiently trained. When interpreted epistemically, it reflects meaningful
engagement with model limitations. This tension explains why emerging agentic systems are
often perceived as simultaneously powerful and unreliable.

The key implication is that the divergence between leadership expectations and current agentic
Al practice reflects a mismatch in rationality assumptions, not a failure of implementation. What
is often expected from agentic Al aligns with epistemic agentic Al, a rationality class oriented
toward understanding rather than execution. Current systems do not meet this standard, but
hybrid agentic environments represent a clear evolutionary response to this pressure.

Recognizing this trajectory allows agentic Al to be discussed and deployed with greater
precision. It clarifies what systems are doing today, what they appear to be doing, and what they
are not designed to do, without collapsing fundamentally different forms of intelligence into a
single, overloaded term.



Multi-Agent Systems in the Rational Agent Framework

Within the rational agent framework formalized by Russell and Norvig, multi-agent systems
arise as an extension of single-agent rationality to environments involving interaction,
competition, or cooperation. Each agent is rational with respect to its own performance measure,
and coordination mechanisms are introduced to manage shared resources, strategic interaction, or
joint outcomes.

Crucially, all agents operate within a common representational ontology. They may possess
different information, local views, or roles, but they reason over the same assumed abstraction of
the environment. Disagreement among agents is treated as a coordination problem to be resolved
through negotiation, equilibrium strategies, or policy alignment. The objective of the system is
convergence toward coherent action.

In this context, multi-agent organization improves scalability, robustness, or efficiency, but it
does not alter the nature of rationality itself. The system remains action-centric. Model adequacy
is assumed rather than examined. Multiple agents do not introduce competing explanatory
frameworks; they distribute execution and decision-making within a shared conceptual frame.

Multi-Agent Organization in Hybrid Agentic Environments

Hybrid agentic environments employ multiple agents or components for a different reason.
Rather than distributing action across agents, hybrid systems distribute epistemic and operational
functions across architectural boundaries.

Action-centric agents continue to optimize behavior under fixed objectives and abstractions.
Alongside them, auxiliary agents or analytic modules perform epistemically relevant functions
such as anomaly detection, bias analysis, alternative representation construction, or cross-domain
correlation. These components do not participate in policy selection. They consume the outputs
and execution traces produced by action-centric agents and generate secondary artifacts for
interpretation.

In hybrid environments, epistemic behavior is approximated through functional separation rather
than through epistemic rationality. Agents responsible for execution are insulated from epistemic
instability, while analytic components surface signals that may indicate model limitations.
Humans remain responsible for interpreting these signals and deciding whether representational
revision is warranted.

Importantly, hybrid environments do not preserve representational disagreement as a first-class
objective. Multiple agents do not maintain incompatible world models with equal standing.
Representational diversity exists instrumentally, but it remains subordinate to execution.
Disagreement is tolerated temporarily, not sustained as a source of epistemic signal.

Hybrid multi-agent organization therefore supports discovery-adjacent workflows without
redefining rationality. It enables systems to act while exposing uncertainty, but it does not
transform agents into epistemic reasoners.



Epistemic Agentic Al and the Necessity of Multi-Agent Synthesis

Epistemic agentic Al would require a fundamentally different use of multiple agents. In
epistemic systems, multi-agent organization is not a means of scaling action or separating
functions. It is the mechanism by which epistemic discovery becomes possible.

Discovery-oriented intelligence emerges from the interaction of agents that maintain distinct, and
sometimes incompatible, representational commitments. A single agent, even one optimized for
epistemic utility, is biased toward internal coherence. Pressure exists to resolve inconsistency
within a unified abstraction. This leads to premature closure, where anomalies are absorbed,
discounted, or normalized rather than interrogated.

Historical scientific and analytical breakthroughs exhibit this same structural pattern. Advances
in fields such as physics, biology, economics, and systems engineering have rarely emerged from
deeper optimization within a single explanatory framework. They arise instead when competing
models, disciplinary perspectives, or representational assumptions are held in tension long
enough for their incompatibilities to become productive. Classical mechanics and quantum
mechanics, correlation-based statistics and causal inference, optimization theory and human-
centered systems design each expose limits in the other. Epistemic progress occurs when those
limits are preserved and interrogated rather than prematurely resolved.

Epistemic agentic Al avoids this failure mode by externalizing epistemic tension across agents.
Each agent may embody a different disciplinary perspective, methodological assumption, or
explanatory framework. One agent may reason in terms of statistical correlation, another in
causal mechanisms, another in physical constraints, and another in social or ethical
considerations. These perspectives are not reconciled immediately. Their incompatibility is
preserved as a source of epistemic signal.

In this context, disagreement is not a coordination failure. It is a productive condition. Progress is
measured not by convergence, but by the expansion, restructuring, and refinement of the
explanatory space.

The Role of Disciplines in Epistemic Multi-Agent Systems

The inclusion of multiple disciplines is not incidental to epistemic agentic Al. Many discovery-
oriented problems are epistemically intractable precisely because no single disciplinary
abstraction is sufficient. Breakthroughs often occur when insights from one domain expose the
limitations of another, or when methods developed for one class of problems are applied
unexpectedly to another.

Epistemic agentic Al would therefore require agents trained as deep subject matter experts in
different domains, each operating under its own representational commitments. The interaction
between these agents enables the identification of blind spots, hidden assumptions, and
unexplored solution spaces. New explanatory structures emerge from tension between
frameworks rather than from deeper optimization within a single framework.



This form of synthesis cannot be achieved by multi-agent systems designed for coordination or
consensus. It requires governance mechanisms that preserve disagreement, track the provenance
of assumptions, and manage epistemic conflict without forcing resolution. Progress is measured
by explanatory adequacy rather than by performance convergence.

This pattern mirrors historical scientific progress, where advances often occurred not through
refinement within a discipline, but when methods from one domain exposed blind spots in
another.

Structural Implications

These distinctions clarify why epistemic agentic Al cannot be realized through incremental
extension of current multi-agent architectures. Increasing the number of agents, adding memory,
or deepening reasoning within a shared abstraction does not produce epistemic synthesis. What is
required is structural pluralism at the representational level.

Action-centric multi-agent systems aim to eliminate disagreement. Hybrid systems tolerate
disagreement instrumentally. Epistemic agentic systems require disagreement as a first-class
mechanism. This requirement defines a distinct rationality class, not an implementation variant.

Recognizing the different roles that multiple agents play across these paradigms is essential for
understanding what current systems can do, what hybrid systems approximate, and what
epistemic agentic Al would require by design.

How Agentic Al Architectures Behave in Practice and What That Means for
Engineering and Leadership

The distinctions between action-centric, hybrid, and epistemic agentic Al are not merely
theoretical. They manifest directly in how action-centric and hybrid systems behave once
deployed, how those behaviors are interpreted, and how responsibility and authority are
implicitly assigned. Epistemic agentic Al, while not yet realized in production, exerts influence
indirectly through the expectations projected onto existing systems. This section examines how
each architecture operates in practice, or is imagined to operate, and why misinterpretation arises
when behavior is assessed without reference to the underlying rationality model. Action-Centric
Agentic Al in Production

Most systems currently described as agentic Al are action-centric rational agents. They
implement policies that map observations or percept histories to actions, optimized against a
predefined objective or performance measure. This includes reinforcement learning agents,
planning agents, and language-model-based agents wrapped with tool use, memory, and task
decomposition.

From an engineering perspective, these systems exhibit stable and desirable properties.
Objectives are explicit. Evaluation criteria are well defined. Learning converges toward
improved performance relative to the same abstraction. As deployment proceeds, action-centric



agents tend to become more confident, reduce variance in outputs, and improve consistency
across similar inputs.

Observed behavior in production reflects this design. When outcomes degrade, the system
responds by optimizing harder within the same conceptual frame. Errors trigger parameter
updates, policy refinement, or additional data collection. Anomalies are suppressed unless
explicitly preserved. Persistent deviations are interpreted as noise, estimation error, or stochastic
variance.

When such systems encounter epistemic intractability, situations where observed outcomes
cannot be reconciled with the assumed abstraction, they lack internal mechanisms to respond.
The system does not recognize that its model of the world may be inadequate. This is not a
failure of implementation. It is a consequence of action-centric rationality, in which the agent is
not permitted to question the structure of the problem it is solving.

From a leadership perspective, this explains why action-centric agentic systems often feel
reliable but brittle. They perform well as long as assumptions hold, and fail silently when those
assumptions erode.

Hybrid Agentic Systems in Practice

Hybrid agentic systems emerge when teams recognize that action-centric agents alone are
insufficient for complex or ambiguous domains. These systems retain action-centric agents for
execution while introducing epistemically oriented components alongside them.

In practice, hybrid systems consist of parallel processes. Action-centric agents continue to
generate recommendations, decisions, or actions optimized against predefined objectives.
Simultaneously, auxiliary components analyze execution traces, outcomes, and intermediate
artifacts. These components may include anomaly detectors, bias diagnostics, model comparison
pipelines, or structural overlays such as graphs.

A defining characteristic of hybrid systems is that epistemic functions do not influence policy
selection directly. They consume observable artifacts emitted by the agent, such as prompts, tool
calls, state transitions, and outcomes, and produce secondary representations. These
representations surface uncertainty, inconsistency, or unexplained variance without altering the
agent’s reward signal or objective function.

From an engineering perspective, this separation of concerns preserves execution stability while
exposing epistemic limits. From a leadership perspective, hybrid systems often feel qualitatively
different. They act, but they also raise questions. Outputs may include confidence indicators,
caveats, or unresolved signals that resemble insight or reflection.

This perceptual shift is the source of frequent misinterpretation. Hybrid systems are sometimes

judged as unstable when they surface uncertainty, or overtrusted when their epistemic signals are
interpreted as autonomous understanding. In both cases, the failure is interpretive rather than
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technical. Hybrid systems behave exactly as designed. They expose epistemic pressure without
redefining rationality.

Epistemic Agentic Al as a Distinct Behavioral Class

Epistemic agentic Al would behave differently in kind, not merely in degree. In such systems,
the primary objective would not be action optimization, but model generation, evaluation, and
revision. Rationality would be defined by epistemic utility rather than by environmental
performance.

If such systems existed, their behavior would appear unfamiliar and often uncomfortable in
operational settings. Rather than converging toward stable policies, epistemic agents would
exhibit non-monotonic learning dynamics. Periods of increased uncertainty, reduced predictive
accuracy, or apparent regression would be rational if they expanded explanatory adequacy.

Persistent anomalies would be treated as signals of model inadequacy rather than errors to be
corrected. The system might abandon previously successful abstractions, propose alternative
representations, or delay action in order to explore competing explanations. Progress would be
measured by the quality of explanation rather than by immediate outcomes.

These behaviors are incompatible with many execution-oriented domains. They would require
governance models that explicitly accept instability, delayed decision-making, and epistemic
disagreement as features rather than defects. For this reason, epistemic agentic Al remains a
research direction rather than a production paradigm.

Comparative Interpretation Across Architectures

The same observable behavior can be interpreted very differently depending on the assumed
rationality model. Increased uncertainty may indicate system degradation under action-centric
metrics, but meaningful engagement with model limits under epistemic metrics. Stability may
indicate convergence or stagnation. Anomaly suppression may indicate robustness or epistemic
blindness.

For engineers, these distinctions clarify what architectures can support without fundamental
redesign. For leadership, they clarify why some systems feel decisive but fragile, while others
feel insightful but uncomfortable.

The critical point is that increasing sophistication in agentic Al does not necessarily produce

better answers. It often produces better questions first. Whether those questions are treated as
failure, signal, or opportunity depends on the rationality model governing the system and the

expectations placed upon it.

Implication

Agentic Al systems do not differ primarily by intelligence level, but by what they are rationally
allowed to prioritize. Action-centric systems are organized around correct action within an
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assumed model of the world. Hybrid systems extend this orientation by pairing execution with
explicit signaling of uncertainty, anomaly, or model stress, without granting agents authority to
revise underlying abstractions. Epistemic agentic systems, if realized, would invert this priority
entirely, treating understanding, explanation, and model revision as primary objectives, even
when action must be delayed or destabilized.

Making this distinction explicit is not only analytically important, but operationally
consequential. It determines how system behavior should be interpreted, where responsibility
resides, and what constitutes success or failure. It also defines what an Al specialist is actually
offering when describing an agentic system to leadership: whether the system is designed to act
within a model, to act while exposing its limits, or to reason about the adequacy of the model
itself. Without this clarity, differences in rationality are easily mistaken for differences in
maturity or capability, leading to misaligned expectations in environments where both execution
and understanding carry material risk.

Establishing Shared Meaning Across Technical and Executive Contexts

A recurring consequence of terminology overload is that discussions of agentic Al often proceed
without explicit agreement on what class of system is under consideration. Engineers and
executives may leave the same meeting confident that alignment has been achieved, even though
each is reasoning from a different rationality model. This misalignment does not arise from poor
communication practices, but from the absence of an explicit taxonomy that distinguishes
execution-oriented intelligence from discovery-oriented intelligence.

In practice, conversations about agentic Al frequently begin at the level of architecture,
capability, or performance. By that point, underlying assumptions about rationality and objective
have already diverged. Engineers typically assume an action-centric framing unless stated
otherwise. Executives often assume a broader epistemic framing because of the nature of the
problems being addressed. Without explicit clarification, both interpretations remain implicit and
unexamined. In this sense, precision in how agentic Al is framed becomes a functional
capability, shaping how systems are evaluated, trusted, and governed.

How AI Engineers Commonly Frame Agentic Systems

In most current deployments, when engineers describe agentic Al, they are referring to action-
centric systems grounded in rational agent theory. These systems are designed to optimize
behavior once objectives, constraints, and abstractions have been specified. They do not evaluate
whether those abstractions remain valid over time.

When this framing is made explicit, system behavior can be described precisely and
conservatively. Engineers may explain that a system improves decision consistency, reduces
latency, or surfaces probabilistic confidence, while also noting that it will not independently
redefine mission objectives, question category structure, or detect conceptual drift unless
explicitly instrumented to do so through external mechanisms.
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In hybrid environments, engineers may further clarify that epistemically relevant signals are
produced outside the agent’s rational core. Anomalies, bias indicators, or unexplained variance
may be preserved and surfaced, but authority for interpretation and representational revision
remains external to the agent itself. This distinction matters operationally. The system supports
insight without owning it.

How Executive Audiences Often Interpret the Same Descriptions

Executives encountering the term agentic Al frequently infer a broader form of intelligence.
Because these systems are applied in domains characterized by ambiguity and evolving
objectives, it is natural to expect that they will help identify unknowns, challenge assumptions,
or reframe the problem itself.

These expectations align closely with what this paper defines as epistemic agentic Al. The
misalignment arises because current systems do not implement epistemic rationality, even when
they exhibit behaviors that resemble it at a surface level. Without explicit framing, surfaced
uncertainty may be interpreted as insight, optimization failure as conceptual limitation, or
anomaly detection as autonomous discovery.

This gap between perceived and actual system authority creates risk. Decisions may be deferred
or accelerated for the wrong reasons. Responsibility for judgment may be implicitly transferred
to systems that are not designed to hold it.

Where Alignment Emerges

Alignment improves when both parties implicitly converge on the same underlying questions,
even if they do not share the same technical vocabulary. From an executive perspective, the most
informative questions are not about sophistication or autonomy, but about assumptions and
limits. Questions such as whether the system can recognize when it is solving the wrong
problem, what happens when uncertainty increases, or who retains responsibility for changing
abstractions directly surface the system’s rationality class.

From an engineering perspective, clarity emerges when system behavior is described in terms of
what the agent is rationally allowed to care about. Action-centric agents care about performance.
Hybrid systems care about performance and signaling. Epistemic systems would care about
understanding, even at the expense of action. When this distinction is made explicit, the
conversation shifts from whether the system is intelligent enough to whether it is appropriate for
the epistemic demands of the task.

Analytical Implication
Breakdowns in discussions about agentic Al do not stem from disagreement about goals or from
inadequate explanation. They stem from the use of a single term to describe systems with

fundamentally different rationality constraints. Once those constraints are made explicit,
alignment follows as a consequence rather than as a goal.

13



This reinforces the central analytical claim of the paper. Precision in language is not a matter of
communication style. It is a structural requirement for deploying agentic systems responsibly in
domains where execution and understanding carry different risks and rewards.

Conclusion

Agentic Al is no longer a speculative construct. It is actively deployed across Government and
Commercial environments, shaping decisions, automating judgment, and influencing outcomes
in domains where error carries real consequence. As these systems continue to mature,
incorporating larger models, longer horizons, and increasingly intertwined architectural
components, the importance of communicating what they are actually designed to do, and what
they are not, will only increase.

The central challenge at this stage is not the maturity of underlying technologies, but the
ambiguity of the language used to describe them. When engineers refer to agentic Al, they are
almost always describing action-centric systems grounded in a rational agent framework that is
precise, powerful, and well understood. When leaders hear the same term, they may reasonably
infer epistemic capability: systems that can surface unknowns, challenge assumptions, and help
rethink the problem itself. These interpretations are both coherent, but they are not
interchangeable.

Hybrid agentic environments have emerged as a pragmatic response to this gap. They extend
action-centric agents with architectural mechanisms that expose epistemic limits, preserve
anomalies, and surface uncertainty, without redefining rationality or authority. Epistemic agentic
Al, by contrast, represents a distinct rationality class oriented toward understanding rather than
execution and does not yet exist as a production paradigm. While elements of epistemic
reasoning are increasingly approximated through hybrid designs, the underlying rational
commitments of current systems remain action-centric.

As agentic Al systems grow more capable and more entangled with decision-making structures,
the risk of conceptual slippage increases. Capabilities may be over-attributed, limitations under-
articulated, and responsibility implicitly transferred to systems that are not designed to hold it.
Recognizing the distinctions between action-centric, hybrid, and epistemic agentic Al is
therefore not a matter of semantics. It is a structural requirement for specifying systems
accurately, evaluating them appropriately, and governing them responsibly.

Precision in language is not a constraint on innovation. It is a capability that determines whether
increasingly powerful agentic systems are deployed with clarity or confusion, alignment or
misinterpretation, and ultimately, trust or misplaced confidence. As agentic Al evolves toward
more interconnected, multi-model, and multi-agent architectures, distinguishing between systems
that optimize action, systems that expose epistemic limits, and systems that would reason about
understanding itself will become a defining capability for responsible deployment.
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