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What Engineers Mean by Agentic AI (and Why Leaders Hear Something 
Else) 

Introduction 
The term agentic AI is now used routinely in technical briefings, product descriptions, and 
executive conversations. Engineers speak of agents, multi-agent systems, and agentic workflows 
as if the meaning were self-evident. Leadership hears the same term and often infers systems 
capable of insight, discovery, and autonomous reasoning about complex problems. Both groups 
are using the same language. They are rarely describing the same thing. 

This divergence reflects multiple conceptions of intelligence operating under a single 
vocabulary. In technical practice, agentic AI is grounded in rational agents that optimize action 
under uncertainty. In executive contexts, agentic AI is often implicitly associated with epistemic 
capability, the capacity to surface unknowns, challenge assumptions, and rethink the problem. 
This ambiguity is not theoretical. It appears repeatedly in technical briefings, acquisition 
discussions, and strategic planning sessions where all parties believe they are aligned. 

The consequence is structural. Systems designed for action optimization are evaluated as if they 
were discovery engines. Outputs produced through optimization or pattern synthesis are 
interpreted as theory formation or understanding. When systems fail to meet those expectations, 
the failure is attributed to immaturity, scale, or insufficient autonomy, rather than to a difference 
in rationality class. This affects how systems are specified, how risk is assessed, how success is 
measured, and how governance is applied. 

This article introduces a taxonomy of agentic systems based on rationality and objective rather 
than implementation detail. By distinguishing between action-centric agentic AI, hybrid agentic 
environments, and epistemic agentic AI, it clarifies what current systems do, why expectations 
diverge, and what changes as hybrid architectures increasingly appear in real deployments. The 
goal is classification and alignment: precise language that lets engineers and leaders 
communicate clearly about capability, limitation, evaluation, and authority without collapsing 
fundamentally different objectives into a single term. 

Terminology Mapping for the Remainder of This Paper 

To reduce ambiguity, I will use the following terms definitions to provide consistency. 

Action centric agentic AI: Rational action selection that maximizes expected performance 
within a fixed performance measure and assumed environment ontology. 
Hybrid agentic environment: Action centric agents for execution combined with external 
epistemic functions, such as anomaly preservation, bias analysis, alternative representation 
construction, or hypothesis surfacing. 
Epistemic agentic AI: A distinct rationality class in which the primary objective is explanatory 
model generation, evaluation, and revision, and progress is measured by epistemic utility rather 
than task performance. 
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This mapping establishes the vocabulary used in the sections that follow and prevents a single 
overloaded term from being interpreted as multiple architectures. This taxonomy does not 
propose a new definition of agentic AI, but makes explicit the definitions already in use and the 
rationality assumptions they carry. 

What Engineers Mean by Agentic AI Today 

When engineers describe agents, multi-agent systems, or agentic workflows, they are usually 
operating within the rational agent framework formalized by Stuart Russell and Peter Norvig in 
Artificial Intelligence: A Modern Approach. This framework remains the dominant theoretical 
reference point for how agents are defined and reasoned about in contemporary artificial 
intelligence systems, even when it is not explicitly cited. 

Under this formulation, an agent is rational if, for every possible percept sequence, it selects an 
action that maximizes the expected value of a predefined performance measure, given its prior 
knowledge and computational constraints. Intelligence is defined behaviorally, in terms of action 
selection under uncertainty, rather than epistemically, in terms of explanation or understanding. 
That is, intelligence is evaluated by whether the agent chooses actions that optimize a predefined 
performance measure given its information and constraints, not by whether the agent can assess 
the adequacy of its own models, justify its abstractions, or reason about why a particular 
representation of the problem is correct. Internal representations, beliefs, memory, and learned 
abstractions are instrumental. They exist to improve action selection relative to the performance 
measure, not to evaluate whether the underlying model of the world is conceptually adequate. 

Modern implementations extend this framework without changing its foundational commitments. 
Reinforcement learning agents approximate optimal policies relative to reward functions. 
Planning agents simulate action sequences within a fixed state space. Large language models, 
when used as agents, add tool invocation, memory, and longer-horizon control. These additions 
expand operational reach, but rationality remains tied to a fixed objective and an assumed 
environment ontology. 

Understanding how uncertainty is treated within this framework is essential, because it defines 
both the power of action-centric agents and the boundary beyond which uncertainty no longer 
signals insufficient data or optimization, but instead indicates a limitation of the assumed model, 
an area where epistemic reasoning would be required but is not available within this framework. 

Stochastic Environments and the Treatment of Uncertainty 

A defining feature of the Russell and Norvig framework is its explicit treatment of uncertainty. 
Agents are assumed to operate in environments that may be partially observable, 
nondeterministic, or stochastic. A stochastic environment is one in which the outcome of an 
action is governed by a probability distribution rather than deterministic transition rules. 
Identical actions taken in apparently identical states may yield different outcomes due to 
randomness, hidden variables, or incomplete information. This formulation captures real-world 
variability while preserving the assumption that the space of possible states and outcomes is 
known in advance. 
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Within this framework, rationality is defined not by guaranteeing outcomes, but by maximizing 
expected utility across possible outcomes weighted by their probabilities. Learning improves the 
agent’s estimates of state, transition dynamics, or reward distributions, allowing it to act more 
effectively under uncertainty. Importantly, uncertainty is defined relative to incomplete 
information within the assumed environment model. It does not extend to uncertainty about the 
adequacy of the model itself. The ontology of states, actions, and outcomes is taken as given, and 
rational behavior consists of acting optimally within that fixed conceptual frame. 

This distinction becomes decisive when systems are expected not only to act under uncertainty, 
but to recognize when the uncertainty reflects a limitation of the model itself rather than of the 
data. 

Action Centric Rationality and Its Implications 

Within the rational agent framework, intelligence is inseparable from action optimization. 
Internal models, simulations, causal structures, and learned representations exist to support 
decision making under uncertainty. Even when agents perform internal planning, counterfactual 
reasoning, or causal inference, these processes remain subordinate to the objective of 
maximizing expected performance within a predefined abstraction. 

This action-centric rationality defines the current technical vernacular of agentic AI. When AI 
specialists describe building agents, orchestrating agent workflows, or composing subject matter 
expert agents, they are almost always referring to systems that instantiate this rationality model. 
The incorporation of contemporary components such as large language models, memory, tool 
invocation, or long-horizon planning does not alter this underlying commitment. These 
mechanisms extend the expressiveness and temporal scope of policy execution, but they do not 
change the definition of rational behavior. 

Under prevailing technical usage, agentic AI encompasses a wide range of established 
techniques. Classical planning algorithms compute action sequences that satisfy goal constraints. 
Reinforcement learning agents approximate optimal policies relative to reward functions. Model-
based agents maintain explicit transition dynamics to support policy evaluation. Multi-agent 
systems extend rational action to strategic and cooperative settings, but preserve the same 
performance-based rationality criterion. In all cases, success is defined relative to a task-specific 
objective function. 

Multi-agent architectures do not constitute a different rationality class. Each agent remains 
rational with respect to its assigned objective, and coordination mechanisms are designed to 
improve joint performance or stability. Disagreement among agents is treated as a coordination 
problem to be resolved. Convergence toward coherent action is assumed to be desirable and is 
often explicitly enforced. 

What this vernacular excludes by definition is epistemic rationality as a primary objective. The 
agent does not evaluate whether its abstraction of the environment is correct. Persistent 
anomalies are treated as noise, estimation error, or stochastic variance unless explicitly modeled 
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otherwise. There is no formal mechanism for revising representational assumptions, introducing 
new explanatory variables, or managing competing theories. 

These exclusions are not omissions or implementation gaps. They are direct consequences of a 
framework designed to solve decision and control problems rather than discovery or model 
construction problems. The agent may be uncertain about the state of the world, but not about the 
structure of the world it reasons over. 

This definition persists because it is precise, mathematically grounded, and operationally 
tractable. Systems can be formally specified, evaluated, and governed. Performance metrics are 
well defined. Failure modes can be analyzed. Safety mechanisms can be applied. For execution-
oriented domains, this rationality model is not only sufficient, but often optimal. 

As a result, when engineers use the term agentic AI, they are almost always referring to action- 
centric systems grounded in this framework, even when the language used is informal or 
compressed. The ambiguity addressed in this paper does not arise from disagreement within the 
technical community, but from how this shared vernacular is interpreted outside it. 

Why Expectations Diverge and How Agentic AI Is Evolving in Practice 

The divergence between what engineers mean by agentic AI and what leaders often hear is not 
accidental. It arises from a mismatch between the rationality model that governs current agentic 
systems and the epistemic demands of the domains in which those systems are increasingly 
deployed. 

As agentic AI systems are applied to environments characterized by uncertainty, incomplete 
theory, and evolving problem definitions, expectations shift accordingly. In such contexts, 
stakeholders frequently expect systems not only to execute decisions, but to surface unknowns, 
challenge assumptions, and support strategic understanding. These expectations arise naturally 
from the nature of the problems being addressed, rather than from misunderstanding or 
overconfidence. 

As a result, when the term agentic AI is used in these settings, it is often interpreted as referring 
to systems capable of reasoning about the adequacy of the problem formulation itself. This 
includes expectations that systems can identify gaps in current understanding, preserve 
unresolved anomalies, and propose new explanatory structures. These expectations align with 
epistemic objectives, even when they are not explicitly articulated in technical terms. 

By contrast, the prevailing technical definition of agentic AI remains grounded in action-centric 
rationality. Under this definition, intelligence consists of selecting actions that maximize 
expected performance within a fixed environment model. The agent is not tasked with evaluating 
whether that model is sufficient or conceptually appropriate. Knowledge remains instrumental. 
Action remains primary. This difference in assumed objectives, rather than any disagreement 
about implementation quality, is the source of the expectation gap. 

Epistemic Agentic AI as the Implicit Ideal 
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What leaders often implicitly expect from agentic AI aligns with what can be described as 
epistemic agentic AI. In this framing, the primary objective of the system is not the execution of 
actions, but the generation, evaluation, and revision of explanatory models. 

In an epistemic rationality model, an action, computation, or representational change is rational if 
it increases the system’s capacity to explain observed phenomena, unify disparate evidence, or 
surface previously unrecognized structure, even when doing so temporarily degrades predictive 
accuracy or operational performance. Progress is evaluated in terms of epistemic utility rather 
than task-level outcomes. 

This definition stands in direct contrast to action centric rationality. Where classical agents are 
evaluated by environmental outcomes, epistemic agents would be evaluated by explanatory 
adequacy, internal coherence, cross-domain consistency, falsifiability, and the ability to generate 
new testable hypotheses. Importantly, epistemic utility is not monotonic: Action-centric 
performance is often expected to be monotonic: more data, better models, higher accuracy. 
Epistemic progress is often non-monotonic: confusion, contradiction, and instability can precede 
insight. Progress in explanation often requires abandoning or destabilizing existing models, 
which can temporarily reduce predictive accuracy, increase uncertainty, or invalidate previously 
effective representations before more adequate abstractions emerge. Introducing new 
abstractions often increases uncertainty before it reduces it. 

A defining feature of epistemic agentic AI is its treatment of anomalies. Persistent deviations that 
cannot be resolved through optimization are interpreted as evidence of model inadequacy rather 
than as noise. Under epistemic rationality, the appropriate response is not correction, but 
representational revision. This behavior is explicitly irrational under action centric criteria but 
rational under epistemic criteria. 

Hybrid Agentic Environments as a Transitional Response 

While epistemic agentic AI remains largely aspirational, agentic systems in practice are already 
evolving in response to epistemic pressure. The dominant response has not been to redefine 
agent rationality, but to extend system architecture. This has given rise to hybrid agentic 
environments. 

A hybrid agentic environment consists of action centric agents operating under classical 
rationality, augmented by auxiliary components that perform epistemically relevant functions 
such as anomaly preservation, bias detection, alternative representation construction, or 
hypothesis surfacing. In these environments, epistemic behavior is not intrinsic to the agents 
themselves. The core agents continue to optimize behavior relative to fixed objectives and 
assumed models. 

Epistemic functions are introduced architecturally rather than rationally. They exist alongside 
action centric agents rather than within them, meaning they operate as parallel analytic services 
that consume the agent’s observable artifacts, such as inputs, intermediate state, decisions, and 
outcomes, and then produce epistemic outputs without influencing policy selection or reward 
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optimization. Humans frequently remain responsible for interpreting these epistemic signals and 
deciding when representational revision is warranted. 

Graph-based overlays are particularly effective in hybrid environments because they allow 
multiple, potentially incompatible relational interpretations to coexist without forcing resolution, 
for example by encoding statistical associations, causal hypotheses, and institutional or policy 
relationships as parallel node-and-edge structures derived from the same execution trace. For 
example, an execution agent may continue to generate recommendations, while an auxiliary 
analytic agent writes each decision and outcome to an event log that feeds a graph-based overlay, 
where entities, actions, assumptions, and impacts are encoded explicitly as nodes and edges, and 
where consistency checks and bias diagnostics are computed over the resulting structure. 
Humans frequently remain responsible for interpreting these epistemic signals and deciding 
when representational revision is warranted. 

Hybrid environments therefore redistribute cognitive labor without redefining rationality, 
preserving execution stability while making epistemic limits visible. Action centric agents 
execute. Analytic components interrogate. The system as a whole may support discovery-
oriented workflows, but no individual agent is rationally committed to theory evaluation or 
revision as a first-class objective. In hybrid environments, these graph representations remain 
epistemically inert substrates for human interpretation; in epistemic agentic systems, similar 
structures would instead be objects of active contestation, revision, and synthesis by the agents 
themselves. 

Reinterpreting Progress and Stability 

As hybrid agentic environments become more common, traditional notions of progress must be 
reconsidered. In action-centric systems, progress is measured by improved performance, reduced 
error, and convergence toward stable policies. In epistemic contexts, these same signals may 
indicate stagnation rather than advancement. 

Hybrid systems often surface increased uncertainty, persistent anomalies, or competing 
interpretations. When evaluated under action-centric criteria alone, such behavior appears 
unstable or insufficiently trained. When interpreted epistemically, it reflects meaningful 
engagement with model limitations. This tension explains why emerging agentic systems are 
often perceived as simultaneously powerful and unreliable. 

The key implication is that the divergence between leadership expectations and current agentic 
AI practice reflects a mismatch in rationality assumptions, not a failure of implementation. What 
is often expected from agentic AI aligns with epistemic agentic AI, a rationality class oriented 
toward understanding rather than execution. Current systems do not meet this standard, but 
hybrid agentic environments represent a clear evolutionary response to this pressure. 

Recognizing this trajectory allows agentic AI to be discussed and deployed with greater 
precision. It clarifies what systems are doing today, what they appear to be doing, and what they 
are not designed to do, without collapsing fundamentally different forms of intelligence into a 
single, overloaded term. 
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Multi-Agent Systems in the Rational Agent Framework 

Within the rational agent framework formalized by Russell and Norvig, multi-agent systems 
arise as an extension of single-agent rationality to environments involving interaction, 
competition, or cooperation. Each agent is rational with respect to its own performance measure, 
and coordination mechanisms are introduced to manage shared resources, strategic interaction, or 
joint outcomes. 

Crucially, all agents operate within a common representational ontology. They may possess 
different information, local views, or roles, but they reason over the same assumed abstraction of 
the environment. Disagreement among agents is treated as a coordination problem to be resolved 
through negotiation, equilibrium strategies, or policy alignment. The objective of the system is 
convergence toward coherent action. 

In this context, multi-agent organization improves scalability, robustness, or efficiency, but it 
does not alter the nature of rationality itself. The system remains action-centric. Model adequacy 
is assumed rather than examined. Multiple agents do not introduce competing explanatory 
frameworks; they distribute execution and decision-making within a shared conceptual frame. 

Multi-Agent Organization in Hybrid Agentic Environments 

Hybrid agentic environments employ multiple agents or components for a different reason. 
Rather than distributing action across agents, hybrid systems distribute epistemic and operational 
functions across architectural boundaries. 

Action-centric agents continue to optimize behavior under fixed objectives and abstractions. 
Alongside them, auxiliary agents or analytic modules perform epistemically relevant functions 
such as anomaly detection, bias analysis, alternative representation construction, or cross-domain 
correlation. These components do not participate in policy selection. They consume the outputs 
and execution traces produced by action-centric agents and generate secondary artifacts for 
interpretation. 

In hybrid environments, epistemic behavior is approximated through functional separation rather 
than through epistemic rationality. Agents responsible for execution are insulated from epistemic 
instability, while analytic components surface signals that may indicate model limitations. 
Humans remain responsible for interpreting these signals and deciding whether representational 
revision is warranted. 

Importantly, hybrid environments do not preserve representational disagreement as a first-class 
objective. Multiple agents do not maintain incompatible world models with equal standing. 
Representational diversity exists instrumentally, but it remains subordinate to execution. 
Disagreement is tolerated temporarily, not sustained as a source of epistemic signal. 

Hybrid multi-agent organization therefore supports discovery-adjacent workflows without 
redefining rationality. It enables systems to act while exposing uncertainty, but it does not 
transform agents into epistemic reasoners. 
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Epistemic Agentic AI and the Necessity of Multi-Agent Synthesis 

Epistemic agentic AI would require a fundamentally different use of multiple agents. In 
epistemic systems, multi-agent organization is not a means of scaling action or separating 
functions. It is the mechanism by which epistemic discovery becomes possible. 

Discovery-oriented intelligence emerges from the interaction of agents that maintain distinct, and 
sometimes incompatible, representational commitments. A single agent, even one optimized for 
epistemic utility, is biased toward internal coherence. Pressure exists to resolve inconsistency 
within a unified abstraction. This leads to premature closure, where anomalies are absorbed, 
discounted, or normalized rather than interrogated. 

Historical scientific and analytical breakthroughs exhibit this same structural pattern. Advances 
in fields such as physics, biology, economics, and systems engineering have rarely emerged from 
deeper optimization within a single explanatory framework. They arise instead when competing 
models, disciplinary perspectives, or representational assumptions are held in tension long 
enough for their incompatibilities to become productive. Classical mechanics and quantum 
mechanics, correlation-based statistics and causal inference, optimization theory and human-
centered systems design each expose limits in the other. Epistemic progress occurs when those 
limits are preserved and interrogated rather than prematurely resolved. 

Epistemic agentic AI avoids this failure mode by externalizing epistemic tension across agents. 
Each agent may embody a different disciplinary perspective, methodological assumption, or 
explanatory framework. One agent may reason in terms of statistical correlation, another in 
causal mechanisms, another in physical constraints, and another in social or ethical 
considerations. These perspectives are not reconciled immediately. Their incompatibility is 
preserved as a source of epistemic signal. 

In this context, disagreement is not a coordination failure. It is a productive condition. Progress is 
measured not by convergence, but by the expansion, restructuring, and refinement of the 
explanatory space. 

The Role of Disciplines in Epistemic Multi-Agent Systems 

The inclusion of multiple disciplines is not incidental to epistemic agentic AI. Many discovery-
oriented problems are epistemically intractable precisely because no single disciplinary 
abstraction is sufficient. Breakthroughs often occur when insights from one domain expose the 
limitations of another, or when methods developed for one class of problems are applied 
unexpectedly to another. 

Epistemic agentic AI would therefore require agents trained as deep subject matter experts in 
different domains, each operating under its own representational commitments. The interaction 
between these agents enables the identification of blind spots, hidden assumptions, and 
unexplored solution spaces. New explanatory structures emerge from tension between 
frameworks rather than from deeper optimization within a single framework. 
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This form of synthesis cannot be achieved by multi-agent systems designed for coordination or 
consensus. It requires governance mechanisms that preserve disagreement, track the provenance 
of assumptions, and manage epistemic conflict without forcing resolution. Progress is measured 
by explanatory adequacy rather than by performance convergence. 

This pattern mirrors historical scientific progress, where advances often occurred not through 
refinement within a discipline, but when methods from one domain exposed blind spots in 
another. 

Structural Implications 

These distinctions clarify why epistemic agentic AI cannot be realized through incremental 
extension of current multi-agent architectures. Increasing the number of agents, adding memory, 
or deepening reasoning within a shared abstraction does not produce epistemic synthesis. What is 
required is structural pluralism at the representational level. 

Action-centric multi-agent systems aim to eliminate disagreement. Hybrid systems tolerate 
disagreement instrumentally. Epistemic agentic systems require disagreement as a first-class 
mechanism. This requirement defines a distinct rationality class, not an implementation variant. 

Recognizing the different roles that multiple agents play across these paradigms is essential for 
understanding what current systems can do, what hybrid systems approximate, and what 
epistemic agentic AI would require by design. 

How Agentic AI Architectures Behave in Practice and What That Means for 
Engineering and Leadership 

The distinctions between action-centric, hybrid, and epistemic agentic AI are not merely 
theoretical. They manifest directly in how action-centric and hybrid systems behave once 
deployed, how those behaviors are interpreted, and how responsibility and authority are 
implicitly assigned. Epistemic agentic AI, while not yet realized in production, exerts influence 
indirectly through the expectations projected onto existing systems. This section examines how 
each architecture operates in practice, or is imagined to operate, and why misinterpretation arises 
when behavior is assessed without reference to the underlying rationality model. Action-Centric 
Agentic AI in Production 

Most systems currently described as agentic AI are action-centric rational agents. They 
implement policies that map observations or percept histories to actions, optimized against a 
predefined objective or performance measure. This includes reinforcement learning agents, 
planning agents, and language-model-based agents wrapped with tool use, memory, and task 
decomposition. 

From an engineering perspective, these systems exhibit stable and desirable properties. 
Objectives are explicit. Evaluation criteria are well defined. Learning converges toward 
improved performance relative to the same abstraction. As deployment proceeds, action-centric 
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agents tend to become more confident, reduce variance in outputs, and improve consistency 
across similar inputs. 

Observed behavior in production reflects this design. When outcomes degrade, the system 
responds by optimizing harder within the same conceptual frame. Errors trigger parameter 
updates, policy refinement, or additional data collection. Anomalies are suppressed unless 
explicitly preserved. Persistent deviations are interpreted as noise, estimation error, or stochastic 
variance. 

When such systems encounter epistemic intractability, situations where observed outcomes 
cannot be reconciled with the assumed abstraction, they lack internal mechanisms to respond. 
The system does not recognize that its model of the world may be inadequate. This is not a 
failure of implementation. It is a consequence of action-centric rationality, in which the agent is 
not permitted to question the structure of the problem it is solving. 

From a leadership perspective, this explains why action-centric agentic systems often feel 
reliable but brittle. They perform well as long as assumptions hold, and fail silently when those 
assumptions erode. 

Hybrid Agentic Systems in Practice 

Hybrid agentic systems emerge when teams recognize that action-centric agents alone are 
insufficient for complex or ambiguous domains. These systems retain action-centric agents for 
execution while introducing epistemically oriented components alongside them. 

In practice, hybrid systems consist of parallel processes. Action-centric agents continue to 
generate recommendations, decisions, or actions optimized against predefined objectives. 
Simultaneously, auxiliary components analyze execution traces, outcomes, and intermediate 
artifacts. These components may include anomaly detectors, bias diagnostics, model comparison 
pipelines, or structural overlays such as graphs. 

A defining characteristic of hybrid systems is that epistemic functions do not influence policy 
selection directly. They consume observable artifacts emitted by the agent, such as prompts, tool 
calls, state transitions, and outcomes, and produce secondary representations. These 
representations surface uncertainty, inconsistency, or unexplained variance without altering the 
agent’s reward signal or objective function. 

From an engineering perspective, this separation of concerns preserves execution stability while 
exposing epistemic limits. From a leadership perspective, hybrid systems often feel qualitatively 
different. They act, but they also raise questions. Outputs may include confidence indicators, 
caveats, or unresolved signals that resemble insight or reflection. 

This perceptual shift is the source of frequent misinterpretation. Hybrid systems are sometimes 
judged as unstable when they surface uncertainty, or overtrusted when their epistemic signals are 
interpreted as autonomous understanding. In both cases, the failure is interpretive rather than 
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technical. Hybrid systems behave exactly as designed. They expose epistemic pressure without 
redefining rationality. 

Epistemic Agentic AI as a Distinct Behavioral Class 

Epistemic agentic AI would behave differently in kind, not merely in degree. In such systems, 
the primary objective would not be action optimization, but model generation, evaluation, and 
revision. Rationality would be defined by epistemic utility rather than by environmental 
performance. 

If such systems existed, their behavior would appear unfamiliar and often uncomfortable in 
operational settings. Rather than converging toward stable policies, epistemic agents would 
exhibit non-monotonic learning dynamics. Periods of increased uncertainty, reduced predictive 
accuracy, or apparent regression would be rational if they expanded explanatory adequacy. 

Persistent anomalies would be treated as signals of model inadequacy rather than errors to be 
corrected. The system might abandon previously successful abstractions, propose alternative 
representations, or delay action in order to explore competing explanations. Progress would be 
measured by the quality of explanation rather than by immediate outcomes. 

These behaviors are incompatible with many execution-oriented domains. They would require 
governance models that explicitly accept instability, delayed decision-making, and epistemic 
disagreement as features rather than defects. For this reason, epistemic agentic AI remains a 
research direction rather than a production paradigm. 

Comparative Interpretation Across Architectures 

The same observable behavior can be interpreted very differently depending on the assumed 
rationality model. Increased uncertainty may indicate system degradation under action-centric 
metrics, but meaningful engagement with model limits under epistemic metrics. Stability may 
indicate convergence or stagnation. Anomaly suppression may indicate robustness or epistemic 
blindness. 

For engineers, these distinctions clarify what architectures can support without fundamental 
redesign. For leadership, they clarify why some systems feel decisive but fragile, while others 
feel insightful but uncomfortable. 

The critical point is that increasing sophistication in agentic AI does not necessarily produce 
better answers. It often produces better questions first. Whether those questions are treated as 
failure, signal, or opportunity depends on the rationality model governing the system and the 
expectations placed upon it. 

Implication 

Agentic AI systems do not differ primarily by intelligence level, but by what they are rationally 
allowed to prioritize. Action-centric systems are organized around correct action within an 
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assumed model of the world. Hybrid systems extend this orientation by pairing execution with 
explicit signaling of uncertainty, anomaly, or model stress, without granting agents authority to 
revise underlying abstractions. Epistemic agentic systems, if realized, would invert this priority 
entirely, treating understanding, explanation, and model revision as primary objectives, even 
when action must be delayed or destabilized. 

Making this distinction explicit is not only analytically important, but operationally 
consequential. It determines how system behavior should be interpreted, where responsibility 
resides, and what constitutes success or failure. It also defines what an AI specialist is actually 
offering when describing an agentic system to leadership: whether the system is designed to act 
within a model, to act while exposing its limits, or to reason about the adequacy of the model 
itself. Without this clarity, differences in rationality are easily mistaken for differences in 
maturity or capability, leading to misaligned expectations in environments where both execution 
and understanding carry material risk. 

Establishing Shared Meaning Across Technical and Executive Contexts 

A recurring consequence of terminology overload is that discussions of agentic AI often proceed 
without explicit agreement on what class of system is under consideration. Engineers and 
executives may leave the same meeting confident that alignment has been achieved, even though 
each is reasoning from a different rationality model. This misalignment does not arise from poor 
communication practices, but from the absence of an explicit taxonomy that distinguishes 
execution-oriented intelligence from discovery-oriented intelligence. 

In practice, conversations about agentic AI frequently begin at the level of architecture, 
capability, or performance. By that point, underlying assumptions about rationality and objective 
have already diverged. Engineers typically assume an action-centric framing unless stated 
otherwise. Executives often assume a broader epistemic framing because of the nature of the 
problems being addressed. Without explicit clarification, both interpretations remain implicit and 
unexamined. In this sense, precision in how agentic AI is framed becomes a functional 
capability, shaping how systems are evaluated, trusted, and governed. 

How AI Engineers Commonly Frame Agentic Systems 

In most current deployments, when engineers describe agentic AI, they are referring to action-
centric systems grounded in rational agent theory. These systems are designed to optimize 
behavior once objectives, constraints, and abstractions have been specified. They do not evaluate 
whether those abstractions remain valid over time. 

When this framing is made explicit, system behavior can be described precisely and 
conservatively. Engineers may explain that a system improves decision consistency, reduces 
latency, or surfaces probabilistic confidence, while also noting that it will not independently 
redefine mission objectives, question category structure, or detect conceptual drift unless 
explicitly instrumented to do so through external mechanisms. 
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In hybrid environments, engineers may further clarify that epistemically relevant signals are 
produced outside the agent’s rational core. Anomalies, bias indicators, or unexplained variance 
may be preserved and surfaced, but authority for interpretation and representational revision 
remains external to the agent itself. This distinction matters operationally. The system supports 
insight without owning it. 

How Executive Audiences Often Interpret the Same Descriptions 

Executives encountering the term agentic AI frequently infer a broader form of intelligence. 
Because these systems are applied in domains characterized by ambiguity and evolving 
objectives, it is natural to expect that they will help identify unknowns, challenge assumptions, 
or reframe the problem itself. 

These expectations align closely with what this paper defines as epistemic agentic AI. The 
misalignment arises because current systems do not implement epistemic rationality, even when 
they exhibit behaviors that resemble it at a surface level. Without explicit framing, surfaced 
uncertainty may be interpreted as insight, optimization failure as conceptual limitation, or 
anomaly detection as autonomous discovery. 

This gap between perceived and actual system authority creates risk. Decisions may be deferred 
or accelerated for the wrong reasons. Responsibility for judgment may be implicitly transferred 
to systems that are not designed to hold it. 

Where Alignment Emerges 

Alignment improves when both parties implicitly converge on the same underlying questions, 
even if they do not share the same technical vocabulary. From an executive perspective, the most 
informative questions are not about sophistication or autonomy, but about assumptions and 
limits. Questions such as whether the system can recognize when it is solving the wrong 
problem, what happens when uncertainty increases, or who retains responsibility for changing 
abstractions directly surface the system’s rationality class. 

From an engineering perspective, clarity emerges when system behavior is described in terms of 
what the agent is rationally allowed to care about. Action-centric agents care about performance. 
Hybrid systems care about performance and signaling. Epistemic systems would care about 
understanding, even at the expense of action. When this distinction is made explicit, the 
conversation shifts from whether the system is intelligent enough to whether it is appropriate for 
the epistemic demands of the task. 

Analytical Implication 

Breakdowns in discussions about agentic AI do not stem from disagreement about goals or from 
inadequate explanation. They stem from the use of a single term to describe systems with 
fundamentally different rationality constraints. Once those constraints are made explicit, 
alignment follows as a consequence rather than as a goal. 



14 
 

This reinforces the central analytical claim of the paper. Precision in language is not a matter of 
communication style. It is a structural requirement for deploying agentic systems responsibly in 
domains where execution and understanding carry different risks and rewards. 

Conclusion 

Agentic AI is no longer a speculative construct. It is actively deployed across Government and 
Commercial environments, shaping decisions, automating judgment, and influencing outcomes 
in domains where error carries real consequence. As these systems continue to mature, 
incorporating larger models, longer horizons, and increasingly intertwined architectural 
components, the importance of communicating what they are actually designed to do, and what 
they are not, will only increase. 

The central challenge at this stage is not the maturity of underlying technologies, but the 
ambiguity of the language used to describe them. When engineers refer to agentic AI, they are 
almost always describing action-centric systems grounded in a rational agent framework that is 
precise, powerful, and well understood. When leaders hear the same term, they may reasonably 
infer epistemic capability: systems that can surface unknowns, challenge assumptions, and help 
rethink the problem itself. These interpretations are both coherent, but they are not 
interchangeable. 

Hybrid agentic environments have emerged as a pragmatic response to this gap. They extend 
action-centric agents with architectural mechanisms that expose epistemic limits, preserve 
anomalies, and surface uncertainty, without redefining rationality or authority. Epistemic agentic 
AI, by contrast, represents a distinct rationality class oriented toward understanding rather than 
execution and does not yet exist as a production paradigm. While elements of epistemic 
reasoning are increasingly approximated through hybrid designs, the underlying rational 
commitments of current systems remain action-centric. 

As agentic AI systems grow more capable and more entangled with decision-making structures, 
the risk of conceptual slippage increases. Capabilities may be over-attributed, limitations under-
articulated, and responsibility implicitly transferred to systems that are not designed to hold it. 
Recognizing the distinctions between action-centric, hybrid, and epistemic agentic AI is 
therefore not a matter of semantics. It is a structural requirement for specifying systems 
accurately, evaluating them appropriately, and governing them responsibly. 

Precision in language is not a constraint on innovation. It is a capability that determines whether 
increasingly powerful agentic systems are deployed with clarity or confusion, alignment or 
misinterpretation, and ultimately, trust or misplaced confidence. As agentic AI evolves toward 
more interconnected, multi-model, and multi-agent architectures, distinguishing between systems 
that optimize action, systems that expose epistemic limits, and systems that would reason about 
understanding itself will become a defining capability for responsible deployment. 

 


